Анатомия широты. 2 часть

Цифровые фильтры

Большую часть информации и вывод формул я взял из книги Digital Signal Processing: A Practical Approach — очень рекомендую, она есть в русской версии — Цифровая обработка сигналов. Практический подход, заинтересованные найдут PDF в сети.

Хочу сделать важное замечание. Тема построения и рассчитывания фильтра действительно очень сложна, содержит массу тонкостей и нюансов, требует знания и понимания теории

В этой статье я покажу, как рассчитать формулы фильтра Баттервота, чтобы у читателя возникло понимание, откуда выводятся эти формулы. Но почему именно такие исходные формулы, почему именно такие замены — можно понять лишь погрузившись в глубокую теорию цифровой обработки сигналов.

Когда я начинал гуглить код фильтров, я сразу находил множество непонятного математического кода, и хотелось хоть чуть-чуть понять, откуда берутся такие рассчетные формулы. Осциллятор, огибающая, дилей — понимание и программирование работы этих составляющих лично мне кажется интуитивным, но только не фильтров. Этой статьей я хочу пробудить интерес к цифровой обработке сигналов) Буду рад, если возникнет желание разобраться в этой теме более основательно.

Вам нужно знать (хотя бы немножко) такие термины как свертка, импульсная характеристика фильтра, передаточная функция фильтра.

Аппроксимация АЧХ идеального фильтра (картинка из советского учебника, не нашел исходник)

Фильтр изменяет сигнал, «убирая» в нем выбранные частоты. Существующие фильтры не идеальны. Полоса пропускания — полоса частот, которую фильтр «не затрагивает» (на графике есть некоторая изменения — особенность неидеального представленного фильтра). Полоса подавления — полоса нежелательных частот. В полосе перехода происходит спад частот. Естественно, фильтр ближе к «идеальному» тем, насколько меньше он искажает полосу пропускания, насколько сильно он подавляет частоты в полосе подавления и насколько узка полоса перехода. Есть разные «приближения» фильтров — фильтр Чебышёва, Баттервота, и так далее — их вы найдете в книжках и на просторах сети.

Одноэлементные фильтры высоких и низких частот

Как правило, одноэлементные фильтры высоких и низких частот применяют непосредственно в акустических системах мощных усилителей звуковой частоты, для улучшения звучания самих звуковых «колонок».

Они подключаются последовательно с динамическими головками. Во первых, они берегут как динамические головки от мощного электрического сигнала, так и усилитель от низкого сопротивления нагрузки не нагружая его лишними динамиками, на той частоте, которую эти динамики не воспроизводят. Во вторых, они делают воспроизведение приятнее на слух.

Чтобы рассчитать одноэлементный фильтр, необходимо знать реактивное сопротивление катушки динамической головки. Расчёт производится по формулам делителя напряжения, что так же справедливо для Г-образного фильтра. Чаще всего, одноэлементные фильтры подбирают «на слух». Для выделения высоких частот на «пищалке» последовательно с ней устанавливается конденсатор, а для выделения низких частот на низкочастотном динамике (или сабвуфере), последовательно с ним подключается дроссель (катушка индуктивности). Например, при мощностях порядка 20…50 Ватт, на пищалки оптимально использовать конденсатор на 5…20 мкФ, а в качестве дросселя низкочастотного динамика использовать катушку, намотанную медным эмалированным проводом, диаметром 0,3…1,0 мм на бобину от видеокассеты VHS, и содержащую 200…1000 витков. Указаны широкие пределы, потому, как подбор – дело индивидуальное.

Форма сигнала

Схемотехнику принято делить на две большие области: цифровую и аналоговую, по типу сигнала. Аналоговая оперирует такими параметрами, как сила тока, напряжение (иногда оно бывает отрицательным) и сопротивление. В цифровой все проще — в схеме есть только высокий и низкий логические уровни, даже без конкретных значений.

В С/С++ подобное отношение моделирует тип bool и два его состояния — true и false. Я и дальше буду использовать аналогии из языков программирования, где это уместно. Надеюсь, это поможет тебе лучше понять происходящее. Кроме того, это ярко показывает, насколько тесно все связано в цифровом мире.

Аналоговая схемотехника капризна и непредсказуема — на параметры сигнала могут влиять не только хорошо известные факторы вроде температуры и внешних наводок, но и даже такие неочевидные вещи, как вовремя не отмытый с платы флюс или окислившиеся контакты (без шуток). Цифровая схемотехника, напротив, слабо зависит от окружающих условий и вообще устойчива к шумам.

Как сделать своими руками

Проще всего изготовить пассивный фильтр низких частот. Это связано с тем, что он изготавливается при применении всего нескольких элементов. Среди особенностей проведения работы своими руками отметим следующее:

  • Проводятся подробные расчеты. Повысить удобство можно путем применения специальных калькуляторов, с помощью которых проводится расчет параметров основных элементов изделия.
  • Выбирается наиболее подходящая схема. Она предусматривает применение специального разделителя, который изготавливается в виде сумматора. Качественного звука в этом случае не достигнуть, но устройство прослужит долго.

Простой фильтр для 2-полосного усилителя собрать просто. Инструкция по проведению работы следующая:

  1. Подается сигнал на вход операционного усилителя.
  2. Подается сигнал на МС2.
  3. С выхода ФНЧ переводится сигнал на МС2.
  4. Блок стабилизации напряжения создается на основе резистора, конденсатора и стабилизатора.
  5. При напряжении питания менее 15В из схемы исключается резистор R11. На компонентах R1, R2, C1, C2 собирается сумматор входного сигнала. Этот элемент отключается в том случае, если подается моносигнал. Подключение источника сигнала проводится напрямую ко второму контакту.
  6. Конденсатор C7 предназначается для фильтрации выходного сигнала. Регулятор сигнала основан на R9, R10, C8.
  7. Для получения устройства потребуется печатная плата. Изготовить ее можно самостоятельно из стеклотекстиля, рекомендуемые размеры листа 2 на 4 см.
  8. Поверхность шлифуется до блеска, после чего обезжиривается. Распечатанный рисунок схемы переносится на поверхность.
  9. Выполняется травлене при применении специального состава. Лишняя медь растворяется, после чего поверхность промывается чистой водой.

Для соединения отдельных элементов проводится пайка. При правильной сборке схемы она должна заработать сразу, при этом дополнительная настройка не требуется. Если звука нет, то придется проверить надежность всех соединений. При работе есть вероятность повреждения основных элементов.

Активный фильтр

Большое широкое распространение получил активный фильтр сабвуфера. Подобная схема обладает следующими особенностями:

  • Активный элемент не нагружает акустическую систему.
  • Входной сигнал фильтруется. За счет этого есть возможность устранить шумы.
  • При правильном подходе можно гибко настроить усилитель.
  • Исходный спектр часто разделяется на несколько каналов. Схема активного фильтра позволяет выбрать низкие и средние, высокие частоты.

Изготовить самостоятельно активный фильтр можно, для этого не требуется специальное оборудование.

Пассивный фильтр

Пассивное устройство проще в изготовлении, но обладает менее привлекательными характеристиками. Его особенности заключаются в следующем:

  • Предназначено для отсеивания низких частот в заданном диапазоне.
  • Не усиливает сигнал.

В продаже встречается большое количество пассивных фильтров. Они могут прослужить в течение длительного периода и имеют относительно небольшие размеры.

Изготовление печатной платы

Мы описали схему, которую нужно использовать, теперь изготовим важнейший элемент, а именно печатную плату.

Необходимо взять стеклотекстолит, ширина которого должна быть 2 см, а длина 4 см. Для начала обезжирьте поверхность и тщательно ее отшлифуйте. Затем распечатав представленную ниже схему, перенесите ее на кусочек стеклотекстолита, соблюдая габариты. Рекомендуется использовать метод ЛУТ.

Обратите внимание!

  • Лучшие комедии за всю историю кинематографа

  • Ухаживаем за красноухой черепахой

  • Монтаж сайдинга своими руками пошагово: этапы работ и подробная инструкция

Рисунок должен полностью отпечататься на поверхности заготовки, если не получилось сделать это с первого раза, можно дорисовать прерванные дорожки о руки.

Приготавливаем раствор, в котором будем травить стеклотекстолит. Вам необходимо взять 2 столовые ложки лимонной кислоты и 6 столовых ложек перекиси водорода и тщательно их перемешать. Для ускорения процесса перемешивания добавляем в щелочной раствор щепотку соли. Соль не участвует в процессе растворения.

Подождав немного убедитесь, что весь лишний медный слой растворился. Затем необходимо достать заготовку из емкости и промыть ее в проточной воде. При помощи ацетона удаляем чернила с платы.

Разбор фильтра с Алиэкспресс

Для того, чтобы вы уловили предыдущую мысль, мы разберем простой пример от наших узкоглазых братьев. На Алиэкпрессе продаются различные фильтры для сабвуфера. Рассмотрим один из них.

Как вы заметили, на нем написаны характеристики фильтра: данный тип фильтра рассчитан на сабвуфер мощностью 300 Ватт, наклон его характеристики 12 дБ/октаву. Если соединять к выходу фильтра саб с сопротивлением катушки в 4 Ома, то частота среза составит 150 Гц. Если же сопротивление катушки саба 8 Ом, то частота среза составит 300 Гц.

Для полных чайников продавец даже привел схему в описании товара. Выглядит она вот так:

Далее мы собираем эту схему в Proteus. Так как при параллельном соединении конденсаторов номиналы суммируются, я сразу заменил 4 конденсатора одним.

Чаще всего можно увидеть прямо на динамиках значение сопротивления катушки на постоянном токе: 2 Ω, 4 Ω, 8 Ω. Реже 16 Ω. Значок Ω после цифр обозначает Омы. Также не забывайте, что катушка в динамике обладает индуктивностью.

Как ведет себя катушка индуктивности на разных частотах?

Как вы видите, на постоянном токе катушка динамика обладает активным сопротивлением, так как она намотана из медного провода. На низких частотах в дело вступает реактивное сопротивление катушки, которое вычисляется по формуле:

где

ХL — сопротивление катушки, Ом

П — постоянная и равна приблизительно 3,14

F — частота, Гц

L — индуктивность, Гн

Так как сабвуфер предназначен именно для низких частот, значит, последовательно с активным сопротивлением самой катушки добавляется реактивное сопротивление этой же самой катушки. Но в нашем опыте мы это учитывать не будем, так как не знаем индуктивность нашего воображаемого динамика. Поэтому, все расчеты в опыте берем с приличной погрешностью.

Как утверждает китаец, при нагрузке на фильтр динамика в 4 Ома, его полоса пропускания будет доходить до 150 Герц. Проверяем так ли это:

Его АЧХ

Как вы видите, частота среза на уровне в -3 дБ составила почти 150 Герц.

Нагружаем наш фильтр динамиком в 8 Ом

Частота среза составила 213 Гц.

В описании на товар утверждалось, что частота среза на 8-омный саб составит 300 Гц. Думаю, можно поверить китайцам, так как во-первых, все данные приближенные, а во-вторых, симуляция в программах далека от реальности. Но суть опыта была не в этом. Как мы видим на АЧХ, нагружая фильтр сопротивлением большего номинала, частота среза сдвигается в большую сторону. Это также надо учитывать при проектировании фильтров.

Применение

LC

-фильтры используются в силовых электрических цепях для гашения помех и для сглаживания пульсаций напряжения после выпрямителя. В каскадах радиоэлектронной аппаратуры часто применяются перестраиваемыеLC -фильтры, например, простейшийLC -контур, включенный на входе средневолнового радиоприёмника обеспечивает настройку на определённую радиостанцию.

Фильтры используются в звуковой аппаратуре в многополосных эквалайзерах для корректировки АЧХ, для разделения сигналов низких, средних и высоких звуковых частот в многополосных акустических системах, в схемах частотной коррекции магнитофонов и др.

Определение частоты среза

Кривая на диаграмме Найквиста, конечно, не имеет типового спада характеристики, который мы хорошо знаем из графиков амплитудно-частотных характеристик, и фактически график Найквиста не дает нам конкретной информации о частоте среза схемы фильтра. Однако изучение взаимосвязи между частотой среза и кривой Найквиста является хорошим способом укрепить понимание концепции частоты среза в целом, а также даст нам некоторое представление об ограничениях подхода Найквиста для визуального изображения частотной характеристики.

Во-первых, нам нужно подумать о том, что на самом деле происходит на частоте среза, с точки зрения как амплитудно-частотной, так и фазо-частотной характеристики.

Частота среза относительно амплитуды

Вы, вероятно, знаете, что другое название для частоты среза – это «частота 3 дБ» (или –3 дБ), и это напоминает нам о том, что фильтр нижних частот первого порядка обеспечивает ослабление на 3 дБ (или, что эквивалентно, усилению –3 дБ), когда входная частота равна ω. Мы не используем децибелы на графике Найквиста, поэтому вместо –3 дБ мы используем соответствующий коэффициент передачи в разах, который равен \(\frac{1}{\sqrt{2}}\)

Когда мы работаем с графиком в полярной системе координат, мы всегда должны помнить о треугольниках; например, амплитуда (модуль) комплексного числа определяется как гипотенуза прямоугольного треугольника, два катета которого являются действительной и мнимой частями; а для вычисления фазы (угла) комплексного числа мы используем тригонометрические функции. Теперь, когда вы думаете с точки зрения треугольников, коэффициент \(\frac{1}{\sqrt{2}}\) дает вам какие-нибудь идеи?

Рисунок 2 – Прямоугольный треугольник. Длина катетов равна 1

Как показано выше, коэффициент \(\sqrt{2}\) вступает в игру всякий раз, когда у прямоугольного треугольника два катета равной длины. Если уменьшить длину катетов до 0,5, длина гипотенузы будет равна \(\sqrt{2} \times 0,5\), что то же самое, что \(\frac{1}{\sqrt{2}}\).

Рисунок 3 – Прямоугольный треугольник. Длина катетов равна 0,5

Итак, что же всё это значит? Рассмотрим следующий график Найквиста:

Рисунок 4 – Это график Найквиста для фильтра нижних частот первого порядка

Обратите внимание, что я не добавил часть графика, которая соответствует отрицательным частотам

Как видите, в самой нижней точке кривой коэффициент усиления фильтра равен \(\frac{1}{\sqrt{2}}\), где абсолютное значение действительной части равно абсолютному значению мнимой части; это и есть местоположение частоты среза на графике Найквиста для фильтра нижних частот первого порядка. То же самое отношение применяется к фильтру верхних частот первого порядка, за исключением того, что в этом случае частота среза находится в самой высокой точке кривой:

Рисунок 5 – Частота среза фильтра верхних частот первого порядка на диаграмме Найквиста

Разница заключается в том, что сдвиг фазы фильтра верхних частот с увеличением частоты изменяется от +90° до 0°, тогда как фаза фильтра нижних частот изменяется от 0° до –90°. Поскольку угол измеряется против часовой стрелки от положительной действительной оси, положительный сдвиг фазы отображается над действительной осью, а отрицательный сдвиг фазы отображается ниже действительной оси.

Также обратите внимание, что на этих двух графиках есть стрелки, указывающие в противоположных направлениях: на графике фильтра нижних частот стрелка указывает на начало координат, поскольку с увеличением частоты коэффициент усиления уменьшается; на графике фильтра верхних частот она указывает в сторону от начала координат, поскольку с увеличением частоты коэффициент усиления увеличивается

Частота среза относительно сдвига фазы

Мы также можем найти частоту среза на графике Найквиста, если вспомнить, что сдвиг фазы на 90°, создаваемый фильтром первого порядка, центрирован относительно частоты среза. Другими словами, фазовый сдвиг при ω составляет +45° или –45°. Вектор, нарисованный в комплексной плоскости, будет иметь угол +45° или –45°, если его действительная и мнимая части имеют одинаковые абсолютные значения, и это приводит нас к тем же геометрическим соотношениям, которые мы обнаружили при рассмотрении частоты среза с точки зрения амплитуды отклика.

Рисунок 6 – Частота среза фильтра нижних частот первого порядка на диаграмме НайквистаРисунок 7 – Частота среза фильтра верхних частот первого порядка на диаграмме Найквиста

Как сделать своими руками

Пассивный фильтр для сабвуфера своими руками просто изготовить благодаря использованию небольшого количества элементов. Фильтр низких частот собирается с учетом нижеприведенных моментов:

Сборка может проводиться по схеме, которая скачивается из сети или создается своими руками. В интернете встречается большое количество различных калькуляторов. Их применение существенно упрощает расчеты. Для этого достаточно ввести исходную информацию, и программа при применении формул рассчитывает требуемые показатели.
Основными параметрами, применяемыми при расчетах, являются индуктивность и емкость.
Простейшая схема представлена сочетанием конденсатора или катушки. Первый элемент можно приобрести в специализированном магазине, для повышения показателя проводится соединение нескольких

Катушка часто изготавливается самостоятельно, для этого применяется медная проволока и стержень из специального сплава.
Пайка отдельных элементов должна проводиться с особой осторожностью. Это связано с тем, что слишком высокая температура может привести к перегреву платы и некоторым другим проблемам.

После создания самодельной конструкции следует провести подключение фильтра к сабвуферу. Подключение выполняется следующим образом:

  • Фильтр подключается к сабвуферу через выход предварительного усилителя после регулятора, который отвечает за регулировку громкости. Это позволяет существенно повысить качество звука.
  • Потенциометр применяется для регулирования соотношения громкости сабвуфера и всего сигнального тракта.
  • К выходу проводится подключение усилителя мощности, который работает по классической схеме. Оба применяются для мостового соединения.

Финишный этап заключается в герметизации всех соединительных элементов. В противном случае на контактах со временем может появиться коррозия, которая станет причиной снижения проводимости. Активный изготавливается с применением управляющей платы.

Как подключить сабвуфер в автомобиль

Что нужно для подключения сабвуфера в авто.Кроме инструментов потребуются следующие изделия:

  1. Силовой кабель
  2. Межблочный экранированный провод с разъёмами RCA(Тюльпан)
  3. Колба с предохранителем
  4. Наконечники под гайку для силового провода
  5. Пластиковые втулки и стяжки

Схема подключения активного сабвуфера не представляет сложности. По красному проводу на соответствующую клемму усилителя низкой частоты подаётся «+» питания с автомобильного аккумулятора. Чтобы перегрев кабеля не вызвал возгорания изоляции в этой цепи предусмотрен предохранитель. Он защищает именно кабель, а не усилитель. В цепи питания УНЧ имеется свой предохранитель. По правилам монтажа колба с предохранителем должна находиться не дальше 15-20 см от аккумулятора. Для подключения силового кабеля к аккумулятору на его конец напаивается наконечник под гайку и одевается пластиковая термоусадка. Минусовая клемма питания усилителя соединяется с массой автомобиля. Для этого можно использовать любой болт с шайбой. Если мощность низкочастотного канала превышает 800 ватт, рекомендуется минус усилителя не соединять с массой автомобиля, а проложить от аккумулятора отдельный кабель. Таким образом,соединение сабвуфера в машине, с аккумулятором пойдёт по двум проводам.

Что такое гиратор?

В русскоязычной литературе тема фильтров на гираторах встречается крайне редко. Информации кране мало. Обычно говорится что-то вроде: » гиратор способен превращать конденсатор в индуктивность» и приводится общая схема гиратора.

Вот то немногое, что становится известно о фильтре на гираторах из книги П. Хоровиц и У. Хилла “Искусство схемотехники”:

Гиратор действительно умеет превращать конденсатор в катушку. Наиболее часто он используется разработчиками микросхем когда необходима индуктивность. При этом гиратор располагают непосредственно на кристалле микросхемы.

Для радиолюбителей хорошей новостью станет то, что гиратор стабильно работает и при не самых точных используемых компонентах. Хотя конечно же лучше использовать прецизионные детали.

В англоязычной литературе фильтры на гираторах широко обсуждаются и применяются. Одним из наиболее интересных вариантов применения является фильтры на гираторах для ЦАП и АЦП.

Расчет амплитудно-частотной характеристики фильтра

Мы можем рассчитать теоретическое поведение фильтра нижних частот, используя частотно-зависимую версию типового расчета делителя напряжения. Выходное напряжение резистивного делителя напряжения выражается следующим образом:

Рисунок 9 – Резистивный делитель напряжения

\

RC фильтр использует эквивалентную структуру, но вместо R2 у нас конденсатор. Сначала мы заменим R2 (в числителе) на реактивное сопротивление конденсатора (XC). Далее нам нужно рассчитать величину полного сопротивления и поместить его в знаменатель. Таким образом, мы имеем

\

Реактивное сопротивление конденсатора указывает величину противодействия протеканию тока, но, в отличие от активного сопротивления, величина противодействия зависит от частоты сигнала, проходящего через конденсатор. Таким образом, мы должны рассчитать реактивное сопротивление на определенной частоте, и формула, которую мы используем для этого, следующая:

\

В приведенном выше примере схемы R ≈ 160 Ом, и C = 10 нФ. Предположим, что амплитуда Vвх равна 1 В, поэтому мы можем просто удалить Vвх из расчетов. Сначала давайте рассчитаем амплитуду Vвых на частоте необходимой нам синусоиды:

\

\

Амплитуда необходимого нам синусоидального сигнала практически не изменяется. Это хорошо, поскольку мы намеревались сохранить синусоидальный сигнал при подавлении шума. Этот результат неудивителен, поскольку мы выбрали частоту среза (100 кГц), которая намного выше частоты синусоидального сигнала (5 кГц).

Теперь посмотрим, насколько успешно фильтр ослабит шумовую составляющую.

\

\

Амплитуда шума составляет всего около 20% от первоначального значения.

Практическая работа

Плавно переходим от теории к практике. Достались мне винтажные колонки под названием Kompaktbox B 9251. И первое что было сделано — произведено прослушивание.

С холодным камнем звук был в среднем не плох, а если говорить конкретно, то местами хороший, а местами как попало. С теплой лампой играть вообще отказались. На основе этих наблюдений был сделан вывод о наличии глубоко зарытого потенциала. Вскрытие показало, что немецкие инженеры решили обойтись одним единственным конденсатором последовательно с ВЧ головкой. Измерение АЧХ дало страшную картину

На рисунке АЧХ одной колонки, кривая с глубокой дыркой на 6 кгц из-за плохого контакта разъема, на нее внимание не обращать. АЧХ отдельно ВЧ и НЧ приведены ниже

Сведение фильтров

Теперь начинается финальный этап — сведение фильтров. Пора намотать катушки… или не намотать? Мотать всегда лень, нет провода, каркасов, конкретных значений индуктивности. В виду этих причин поискав в хламе нашлись пары катушек на 0,8 мкг и 3 мкг — на них и пришлось строить. В крайнем случаи всегда же можно домотать или отмотать лишнее.

По графику видно, что раздел попал в район 1,8 кгц, что вполне вписывается в задуманные границы. Подбором конденсаторов удалось добиться следующего импеданса. На частоте раздела имеется два бугорка, но их высота меньше полу ома — это не критично. Это не конечный его вид, в последствии был несколько увеличен резистор в цепочке Цобеля пищалки.

На приведенных выше картинках АЧХ как самого фильтра, так и АЧХ динамиков с его включением.

Принципиальная схема ФНЧ

Схема фильтра для сабвуфера показана на рисунке. Работает он на основе двух операционных усилителей U1-U2 (NE5532). Первый из них отвечает за суммирование и фильтрацию сигнала, в то время как второй обеспечивает его кэширование.

Принципиальная схема ФНЧ к сабу

Стереофонический входной сигнал подается на разъем GP1, а дальше через конденсаторы C1 (470nF) и C2 (470nF), резистора R3 (100k) и R4 (100k) попадает на инвертирующий вход усилителя U1A. На этом элементе реализован сумматор сигнала с регулируемым коэффициентом усиления, собранный по классической схеме. Резистор R6 (27k) вместе с P1 (50k) позволяют провести регулировку усиления в диапазоне от 0.5 до 1.5, что позволит подобрать усиления сабвуфера в целом.

Резистор R9 (100k) улучшает стабильность работы усилителя U1A и обеспечивает его хорошую поляризацию в случае отсутствия входного сигнала.

Сигнал с выхода усилителя попадает на активный фильтр нижних частот второго порядка, построенный U1B. Это типичная архитектура Sallen-Key, которая позволяет получить фильтры с разной крутизной и амплитудной. На форму этой характеристики напрямую влияют конденсаторы C8 (22nF), C9 (22nF) и резисторы R10 (22k), R13 (22k) и потенциометр P2 (100k). Логарифмическая шкала потенциометра позволяет добиться линейного изменения граничной частоты во время вращения ручки. Широкий диапазон частот (до 260 Гц) достигается при крайнем левом положении потенциометра P2, поворачивая вправо вызываем сужения полосы частот до 50 Гц. На рисунке далее показана измеренная амплитудная характеристика всей схемы для двух крайних и среднего положения потенциометра P2. В каждом из случаев потенциометр P1 был установлен в среднем положении, обеспечивающим усиление 1 (0 дб).

Сигнал с выхода фильтра обрабатывается с помощью усилителя U2. Элементы C16 (10pF) и R17 (56k) обеспечивают стабильную работу м/с U2A. Резисторы R15-R16 (56k) определяют усиление U2B, а C15 (10pF) повышает его стабильность. На обоих выходах схемы используются фильтры, состоящие из элементов R18-R19 (100 Ом), C17-C18 (10uF/50V) и R20-R21 (100k), через которые сигналы поступают на выходной разъем GP3. Благодаря такой конструкции, на выходе мы получаем два сигнала сдвинутых по фазе на 180 градусов, что позволяет осуществлять прямое подключение двух усилителей и усилителя с мостовой схемой.

В фильтре используется простой блок питания с двухполярным напряжением, основанный на стабилитронах D1 (BZX55-C16V), D2 (BZX55-C16V) и двух транзисторах T1 (BD140) и T2 (BD139). Резисторы R2 (4,7k) и R8 (4,7k) представляют собой ограничители тока стабилитронов, и были подобраны таким образом, чтобы при минимальном напряжении питания ток составлял около 1 мА, а при максимальном был безопасен для D1 и D2.

Элементы R5 (510 Ом), C4 (47uF/25V), R7 (510 Ом), C6 (47uF/25V) представляют собой простые фильтры сглаживания напряжения на базах T1 и T2. Резисторы R1 (10 Ом), R11 (10 Ом) и конденсаторы C3 (100uF/25V), C7 (100uF/25V) представляют собой также фильтр напряжения питания. Разъем питания — GP2.

Полосовые фильтры

В прошлой статье мы с вами рассматривали один из примеров полосового фильтра

Вот так выглядит АЧХ этого фильтра.

Особенность таких фильтров такова, что они имеют две частоты среза. Определяются они также на уровне в -3дБ или на уровне в 0,707 от максимального значения коэффициента передачи, а еще точнее Ku max/√2.

Полосовые резонансные фильтры

Если нам надо выделить какую-то узкую полосу частот, для этого применяются LC-резонанcные фильтры. Еще их часто называют избирательными. Давайте рассмотрим одного из их представителя.

LC-контур в сочетании с резистором R образует делитель напряжения. Катушка и конденсатор в паре создают параллельный колебательный контур, который на частоте резонанса будет иметь очень высокий импеданс, в народе – обрыв цепи. В результате, на выходе цепи при резонансе будет значение входного напряжения, при условии если мы к выходу такого фильтра не цепляем никакой нагрузки.

АЧХ данного фильтра будет выглядеть примерно вот так:

В реальной же цепи пик характеристики АЧХ будет сглажен за счет потерь в катушке и конденсаторе, так как катушка и конденсатор обладают паразитными параметрами.

Если взять по оси Y значение коэффициента передачи, то график АЧХ будет выглядеть следующим образом:

Постройте прямую на уровне в 0,707 и оцените полосу пропускания такого фильтра. Как вы можете заметить, она будет очень узкой. Коэффициент добротности Q позволяет оценить характеристику контура. Чем большее добротность, тем острее характеристика.

Как же определить добротность из графика? Для этого надо найти резонансную частоту по формуле:

где

f0— это резонансная частота контура, Гц

L — индуктивность катушки, Гн

С — емкость конденсатора, Ф

Подставляем L=1mH и С=1uF и получаем для нашего контура резонансную частоту в 5033 Гц.

Теперь надо определить полосу пропускания нашего фильтра. Делается это как обычно на уровне в -3 дБ, если вертикальная шкала в децибелах, либо на уровне в 0,707, если шкала линейная.

Давайте увеличим верхушку нашей АЧХ и найдем две частоты среза.

f1 = 4839 Гц

f2 = 5233 Гц

Следовательно, полоса пропускания Δf=f2 – f1 = 5233-4839=394 Гц

Ну и осталось найти добротность:

Q=5033/394=12,77

Режекторные фильтры

Другой разновидностью LC схем является последовательная LC-схема.

Ее АЧХ будет выглядеть примерно вот так:

Как можно увидеть, такая схема на резонансной частоте и вблизи нее как бы вырезает небольшой диапазон частот. Здесь вступает в силу резонанс последовательного колебательного контура. Как вы помните, на резонансной частоте сопротивление контура будет равняться его активному сопротивлению. Активное сопротивление контура составляют паразитные параметры катушки и конденсатора, поэтому падение напряжения на самом контуре будет равняться падению напряжения на паразитном сопротивлении, которое очень мало. Такой фильтр называют узкополосным режекторным фильтром.

На практике звенья таких фильтров каскадируют, чтобы получить различные фильтры с требуемой полосой пропускания. Но есть один минус у фильтров, в которых имеется катушка индуктивности. Катушки дорогие, громоздкие, имеют много паразитных параметров. Они чувствительны к фону, который магнитным путем наводится от расположенных поблизости силовых трансформаторов.

Конечно, этот недостаток можно устранить, поместив катушку индуктивности в экран из мю-металла, но от этого она станет только дороже. Проектировщики всячески пытаются избежать катушек индуктивности, если это возможно. Но, благодаря прогрессу, в настоящее время катушки не используются в активных фильтрах, построенных на ОУ.

Видео на тему “Как работает электрический фильтр”, рекомендую к просмотру:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector